\(\int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx\) [1404]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 468 \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx=-\frac {a^2 \sqrt {b} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\left (-a^2+b^2\right )^{7/4} f g^{5/2}}-\frac {a^2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\left (-a^2+b^2\right )^{7/4} f g^{5/2}}-\frac {2 b}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}}+\frac {2 a \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{3 \left (a^2-b^2\right ) f g^2 \sqrt {g \cos (e+f x)}}-\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (a^2-b^2\right ) \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) f g^2 \sqrt {g \cos (e+f x)}}-\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (a^2-b^2\right ) \left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) f g^2 \sqrt {g \cos (e+f x)}}+\frac {2 a \sin (e+f x)}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}} \]

[Out]

-2/3*b/(a^2-b^2)/f/g/(g*cos(f*x+e))^(3/2)+2/3*a*sin(f*x+e)/(a^2-b^2)/f/g/(g*cos(f*x+e))^(3/2)-a^2*arctan(b^(1/
2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))*b^(1/2)/(-a^2+b^2)^(7/4)/f/g^(5/2)-a^2*arctanh(b^(1/2)*(g*co
s(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))*b^(1/2)/(-a^2+b^2)^(7/4)/f/g^(5/2)+2/3*a*(cos(1/2*f*x+1/2*e)^2)^(1/2
)/cos(1/2*f*x+1/2*e)*EllipticF(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)/(a^2-b^2)/f/g^2/(g*cos(f*x+e))^(1/
2)-a^3*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b-(-a^2+b^2)^(1/2)),
2^(1/2))*cos(f*x+e)^(1/2)/(a^2-b^2)/f/g^2/(a^2-b*(b-(-a^2+b^2)^(1/2)))/(g*cos(f*x+e))^(1/2)-a^3*(cos(1/2*f*x+1
/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(
1/2)/(a^2-b^2)/f/g^2/(a^2-b*(b+(-a^2+b^2)^(1/2)))/(g*cos(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 468, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {2981, 2716, 2721, 2720, 2645, 30, 2781, 2886, 2884, 335, 218, 214, 211} \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx=-\frac {a^2 \sqrt {b} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{f g^{5/2} \left (b^2-a^2\right )^{7/4}}-\frac {a^2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{f g^{5/2} \left (b^2-a^2\right )^{7/4}}+\frac {2 a \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{3 f g^2 \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}-\frac {2 b}{3 f g \left (a^2-b^2\right ) (g \cos (e+f x))^{3/2}}+\frac {2 a \sin (e+f x)}{3 f g \left (a^2-b^2\right ) (g \cos (e+f x))^{3/2}}-\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{f g^2 \left (a^2-b^2\right ) \left (a^2-b \left (b-\sqrt {b^2-a^2}\right )\right ) \sqrt {g \cos (e+f x)}}-\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{f g^2 \left (a^2-b^2\right ) \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {g \cos (e+f x)}} \]

[In]

Int[Sin[e + f*x]^2/((g*Cos[e + f*x])^(5/2)*(a + b*Sin[e + f*x])),x]

[Out]

-((a^2*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/((-a^2 + b^2)^(7/4)*f*g^(5
/2))) - (a^2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/((-a^2 + b^2)^(7/4)
*f*g^(5/2)) - (2*b)/(3*(a^2 - b^2)*f*g*(g*Cos[e + f*x])^(3/2)) + (2*a*Sqrt[Cos[e + f*x]]*EllipticF[(e + f*x)/2
, 2])/(3*(a^2 - b^2)*f*g^2*Sqrt[g*Cos[e + f*x]]) - (a^3*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b
^2]), (e + f*x)/2, 2])/((a^2 - b^2)*(a^2 - b*(b - Sqrt[-a^2 + b^2]))*f*g^2*Sqrt[g*Cos[e + f*x]]) - (a^3*Sqrt[C
os[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/((a^2 - b^2)*(a^2 - b*(b + Sqrt[-a^2 +
b^2]))*f*g^2*Sqrt[g*Cos[e + f*x]]) + (2*a*Sin[e + f*x])/(3*(a^2 - b^2)*f*g*(g*Cos[e + f*x])^(3/2))

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2645

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2981

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Dist[a*(d^2/(a^2 - b^2)), Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 2), x], x] + (-D
ist[b*(d/(a^2 - b^2)), Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] - Dist[a^2*(d^2/(g^2*(a^2 - b^2
))), Int[(g*Cos[e + f*x])^(p + 2)*((d*Sin[e + f*x])^(n - 2)/(a + b*Sin[e + f*x])), x], x]) /; FreeQ[{a, b, d,
e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] && GtQ[n, 1]

Rubi steps \begin{align*} \text {integral}& = \frac {a \int \frac {1}{(g \cos (e+f x))^{5/2}} \, dx}{a^2-b^2}-\frac {b \int \frac {\sin (e+f x)}{(g \cos (e+f x))^{5/2}} \, dx}{a^2-b^2}-\frac {a^2 \int \frac {1}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{\left (a^2-b^2\right ) g^2} \\ & = \frac {2 a \sin (e+f x)}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}}+\frac {a \int \frac {1}{\sqrt {g \cos (e+f x)}} \, dx}{3 \left (a^2-b^2\right ) g^2}-\frac {a^3 \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 \left (-a^2+b^2\right )^{3/2} g^2}-\frac {a^3 \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 \left (-a^2+b^2\right )^{3/2} g^2}+\frac {b \text {Subst}\left (\int \frac {1}{x^{5/2}} \, dx,x,g \cos (e+f x)\right )}{\left (a^2-b^2\right ) f g}-\frac {\left (a^2 b\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (a^2-b^2\right ) g^2+b^2 x^2\right )} \, dx,x,g \cos (e+f x)\right )}{\left (a^2-b^2\right ) f g} \\ & = -\frac {2 b}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}}+\frac {2 a \sin (e+f x)}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}}-\frac {\left (2 a^2 b\right ) \text {Subst}\left (\int \frac {1}{\left (a^2-b^2\right ) g^2+b^2 x^4} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{\left (a^2-b^2\right ) f g}+\frac {\left (a \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)}} \, dx}{3 \left (a^2-b^2\right ) g^2 \sqrt {g \cos (e+f x)}}-\frac {\left (a^3 \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 \left (-a^2+b^2\right )^{3/2} g^2 \sqrt {g \cos (e+f x)}}-\frac {\left (a^3 \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 \left (-a^2+b^2\right )^{3/2} g^2 \sqrt {g \cos (e+f x)}} \\ & = -\frac {2 b}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}}+\frac {2 a \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{3 \left (a^2-b^2\right ) f g^2 \sqrt {g \cos (e+f x)}}+\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (-a^2+b^2\right )^{3/2} \left (b-\sqrt {-a^2+b^2}\right ) f g^2 \sqrt {g \cos (e+f x)}}-\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (-a^2+b^2\right )^{3/2} \left (b+\sqrt {-a^2+b^2}\right ) f g^2 \sqrt {g \cos (e+f x)}}+\frac {2 a \sin (e+f x)}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}}-\frac {\left (a^2 b\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g-b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{\left (-a^2+b^2\right )^{3/2} f g^2}-\frac {\left (a^2 b\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g+b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{\left (-a^2+b^2\right )^{3/2} f g^2} \\ & = -\frac {a^2 \sqrt {b} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\left (-a^2+b^2\right )^{7/4} f g^{5/2}}-\frac {a^2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{\left (-a^2+b^2\right )^{7/4} f g^{5/2}}-\frac {2 b}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}}+\frac {2 a \sqrt {\cos (e+f x)} \operatorname {EllipticF}\left (\frac {1}{2} (e+f x),2\right )}{3 \left (a^2-b^2\right ) f g^2 \sqrt {g \cos (e+f x)}}+\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (-a^2+b^2\right )^{3/2} \left (b-\sqrt {-a^2+b^2}\right ) f g^2 \sqrt {g \cos (e+f x)}}-\frac {a^3 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{\left (-a^2+b^2\right )^{3/2} \left (b+\sqrt {-a^2+b^2}\right ) f g^2 \sqrt {g \cos (e+f x)}}+\frac {2 a \sin (e+f x)}{3 \left (a^2-b^2\right ) f g (g \cos (e+f x))^{3/2}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 21.36 (sec) , antiderivative size = 1184, normalized size of antiderivative = 2.53 \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx=\frac {2 \cos (e+f x) (-b+a \sin (e+f x))}{3 \left (a^2-b^2\right ) f (g \cos (e+f x))^{5/2}}-\frac {a \cos ^{\frac {5}{2}}(e+f x) \left (-\frac {4 a \left (a+b \sqrt {1-\cos ^2(e+f x)}\right ) \left (\frac {5 a \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \sqrt {\cos (e+f x)}}{\sqrt {1-\cos ^2(e+f x)} \left (5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )-2 \left (2 b^2 \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (-a^2+b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \cos ^2(e+f x)\right ) \left (a^2+b^2 \left (-1+\cos ^2(e+f x)\right )\right )}-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \sqrt {b} \left (2 \arctan \left (1-\frac {(1+i) \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{-a^2+b^2}}\right )+\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (e+f x)}+i b \cos (e+f x)\right )-\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (e+f x)}+i b \cos (e+f x)\right )\right )}{\left (-a^2+b^2\right )^{3/4}}\right ) \sin (e+f x)}{\sqrt {1-\cos ^2(e+f x)} (a+b \sin (e+f x))}+\frac {2 b \left (a+b \sqrt {1-\cos ^2(e+f x)}\right ) \left (\frac {5 b \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{2},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \sqrt {\cos (e+f x)} \sqrt {1-\cos ^2(e+f x)}}{\left (-5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{2},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+2 \left (2 b^2 \operatorname {AppellF1}\left (\frac {5}{4},-\frac {1}{2},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \cos ^2(e+f x)\right ) \left (a^2+b^2 \left (-1+\cos ^2(e+f x)\right )\right )}+\frac {a \left (-2 \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )+2 \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )\right )}{4 \sqrt {2} \sqrt {b} \left (a^2-b^2\right )^{3/4}}\right ) \sin ^2(e+f x)}{\left (1-\cos ^2(e+f x)\right ) (a+b \sin (e+f x))}\right )}{3 (a-b) (a+b) f (g \cos (e+f x))^{5/2}} \]

[In]

Integrate[Sin[e + f*x]^2/((g*Cos[e + f*x])^(5/2)*(a + b*Sin[e + f*x])),x]

[Out]

(2*Cos[e + f*x]*(-b + a*Sin[e + f*x]))/(3*(a^2 - b^2)*f*(g*Cos[e + f*x])^(5/2)) - (a*Cos[e + f*x]^(5/2)*((-4*a
*(a + b*Sqrt[1 - Cos[e + f*x]^2])*((5*a*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*
x]^2)/(-a^2 + b^2)]*Sqrt[Cos[e + f*x]])/(Sqrt[1 - Cos[e + f*x]^2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Co
s[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] - 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/4, Cos[e + f*x]^2, (b^2*Co
s[e + f*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a
^2 + b^2)])*Cos[e + f*x]^2)*(a^2 + b^2*(-1 + Cos[e + f*x]^2))) - ((1/8 - I/8)*Sqrt[b]*(2*ArcTan[1 - ((1 + I)*S
qrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[e + f*x]])/(-a^2 + b^2
)^(1/4)] + Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] + I*b*Cos[e + f*x]] -
Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[e + f*x]] + I*b*Cos[e + f*x]]))/(-a^2 + b^2
)^(3/4))*Sin[e + f*x])/(Sqrt[1 - Cos[e + f*x]^2]*(a + b*Sin[e + f*x])) + (2*b*(a + b*Sqrt[1 - Cos[e + f*x]^2])
*((5*b*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[e +
 f*x]]*Sqrt[1 - Cos[e + f*x]^2])/((-5*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x
]^2)/(-a^2 + b^2)] + 2*(2*b^2*AppellF1[5/4, -1/2, 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] +
 (a^2 - b^2)*AppellF1[5/4, 1/2, 1, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)*(a
^2 + b^2*(-1 + Cos[e + f*x]^2))) + (a*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] +
 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*
(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/
4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]]))/(4*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)))*Sin[e + f*x]^2)/((1 - Cos[e +
 f*x]^2)*(a + b*Sin[e + f*x]))))/(3*(a - b)*(a + b)*f*(g*Cos[e + f*x])^(5/2))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 6.33 (sec) , antiderivative size = 1070, normalized size of antiderivative = 2.29

method result size
default \(\text {Expression too large to display}\) \(1070\)

[In]

int(sin(f*x+e)^2/(g*cos(f*x+e))^(5/2)/(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

(-16/g^2*b*(1/6*2^(1/2)/(16*a^2-16*b^2)*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)*(2^(1/2)+cos(1/2*f*x+1/2*e))/g/(2*
cos(1/2*f*x+1/2*e)*2^(1/2)-2*sin(1/2*f*x+1/2*e)^2+3)+1/6*2^(1/2)/(16*a^2-16*b^2)*(-2*g*sin(1/2*f*x+1/2*e)^2+g)
^(1/2)*(-2^(1/2)+cos(1/2*f*x+1/2*e))/g/(2*cos(1/2*f*x+1/2*e)*2^(1/2)+2*sin(1/2*f*x+1/2*e)^2-3)+1/4*a^2/(a-b)/(
a+b)*(g^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*g*cos(1/2*f*x+1/2*e)^2-g+(g^2*(a^2-b^2)/b^2)^(1/4)*(2*g*cos(1/2*
f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2))/(2*g*cos(1/2*f*x+1/2*e)^2-g-(g^2*(a^2-b^2)/b^2)^(1/4)
*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2^(1/2)*(2*g*cos(1/2*f*x+1/2
*e)^2-g)^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*g*cos(1/2*f*x+1/2*e)
^2-g)^(1/2)-(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4)))/(16*a^2-16*b^2)/g)+8*(g*(2*cos(1/2*f*x+1/2*
e)^2-1)*sin(1/2*f*x+1/2*e)^2)^(1/2)*a/g^2*(-1/(4*a^2-4*b^2)*(-1/6*cos(1/2*f*x+1/2*e)/g*(-g*(2*sin(1/2*f*x+1/2*
e)^4-sin(1/2*f*x+1/2*e)^2))^(1/2)/(cos(1/2*f*x+1/2*e)^2-1/2)^2+1/3*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f
*x+1/2*e)^2)^(1/2)/(-g*(2*sin(1/2*f*x+1/2*e)^4-sin(1/2*f*x+1/2*e)^2))^(1/2)*EllipticF(cos(1/2*f*x+1/2*e),2^(1/
2)))+1/64*a^2/(a-b)/(a+b)/b^2*sum(1/_alpha/(2*_alpha^2-1)*(2^(1/2)/(g*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*ar
ctanh(1/2*g*(4*_alpha^2-3)/(4*a^2-3*b^2)*(b^2*_alpha^2+4*a^2*cos(1/2*f*x+1/2*e)^2-3*b^2*cos(1/2*f*x+1/2*e)^2-3
*a^2+2*b^2)*2^(1/2)/(g*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-g*(2*sin(1/2*f*x+1/2*e)^4-sin(1/2*f*x+1/2*e)^2)
)^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/2*e)^2)^(1/2)/(-g*sin(1
/2*f*x+1/2*e)^2*(2*sin(1/2*f*x+1/2*e)^2-1))^(1/2)*EllipticPi(cos(1/2*f*x+1/2*e),-4*b^2/a^2*(_alpha^2-1),2^(1/2
))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))/sin(1/2*f*x+1/2*e)/(g*(2*cos(1/2*f*x+1/2*e)^2-1))^(1/2))/f

Fricas [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)^2/(g*cos(f*x+e))^(5/2)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)**2/(g*cos(f*x+e))**(5/2)/(a+b*sin(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{\left (g \cos \left (f x + e\right )\right )^{\frac {5}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)^2/(g*cos(f*x+e))^(5/2)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^2/((g*cos(f*x + e))^(5/2)*(b*sin(f*x + e) + a)), x)

Giac [F]

\[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{\left (g \cos \left (f x + e\right )\right )^{\frac {5}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

[In]

integrate(sin(f*x+e)^2/(g*cos(f*x+e))^(5/2)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^2/((g*cos(f*x + e))^(5/2)*(b*sin(f*x + e) + a)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{(g \cos (e+f x))^{5/2} (a+b \sin (e+f x))} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^2}{{\left (g\,\cos \left (e+f\,x\right )\right )}^{5/2}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \]

[In]

int(sin(e + f*x)^2/((g*cos(e + f*x))^(5/2)*(a + b*sin(e + f*x))),x)

[Out]

int(sin(e + f*x)^2/((g*cos(e + f*x))^(5/2)*(a + b*sin(e + f*x))), x)